Collegiate Wind Competition 2017-2018

Market Team B1 Alana Benson Anthony Cheslic **Craig Collins** Michael Vogelsang Leo Segura De Niz Mitchell Green

PROJECT DESCRIPTION

- Conceptual Market Turbine
 - \circ 3.5 MW wind turbine
 - 120m hub height
 - 70m blades
 - Hybrid concrete-S500 Steel Tower
- Design Completed:
 - No manufacturing required
 - Possible 3D printing
 - Scaled Version the size of test turbine
 - Simplify parts to print
- Finite Element Analysis on tower
 - Tower experiences most loads
 - Tests with loads at 25 m/s
 - Assumptions:
 - Concrete is rigid body
 - Braking will stop all forces after 25 m/s
 - Gravitational forces of just the mechanical parts
 - 152.3 MPa max stress at base of steel (500 MPa Yield)

Figure 1: Market 3.5 MW Turbine

PROJECT DESCRIPTION

Sitting Challenge

- Two Separate Elements
 - Element 1: Research and Develop a Plan for a 100-MW Windfarm in the Team's Home State.
 - Select the top three development site within 100 miles of the team's school.
 - Choose one of the three proposed sites and develop a preliminary wind farm design.
 - Finalize a detailed design of the site plan.
 - Community outreach- Propose site plan to government entity.
 - Element 2: Design a Wind Farm During the Competition.
 - Team's will be given a siting challenge packet of the site area with detailed resource information.
 - Team's will have one day to develop a solution to the proposed site.
 - Team's will then develop a preliminary design layout using wind plant siting software and present that to a siting judge.

UPDATES

- V2G
 - Begun adjusting V2G example to meet a simulation that matches the business scenario.
 - Will be speaking to Dr. Yaramasu for further help.

• Electrical System

- Have begun talking to EE students on the test team about working on the electrical system.
- Will be meeting with EE students this week to begin construction of the simulation.
- Siting:
 - Considered three sites
 - Picked a site
 - Attained wind data
 - Started learning Windfarmer Analyst
 - Met with County Planners

MOVING FORWARD

- Market Overview
 - No manufacturing or testing required.
 - Electrical topology of turbine, possible 3D Printing
- V2G
 - Considering whether to continue to adjust example to match business proposal scenario or begin construction of a separate simulation.
 - Possibly work with EE students.
- Electrical System
 - Will be working with EE students over the coming weeks to assemble the electrical system simulation.
- Siting
 - \circ Siting poster including a detailed design of the site plan \rightarrow Windfarmer Analyst
 - Conditional permit application.
 - Coconino county presentation.
 - Considerations: Wind resource, terrain, land owners, vegetation, access to transmission, transportation access, environmental impacts, and community factors.

MOVING FORWARD: BUDGET

Travel Budget Collegiate Wind Competition Market Team 2018						
Description	Type	Unit Cost	Quantity	y Amount		Notes
Flight on Delta/United	Transportation	\$256.00	3	\$ (76	58.00)	3 Students: depart 5/7, return evening of 5/10
Hotel at least expensive official conference hotel available (\$240/night including tax)	Lodging	\$240.00	2	\$ (1,44	10. <mark>00</mark>)	3 students, 2 Students per room, 2 rooms total:
Flag to PHX shuttle and return shuttle to Fla	Transportation	\$ 96.00	з	\$ (28	38. <mark>00</mark>)	3 Students
shuttles or trains in Chicago	Transportation	\$ 80.00	з	\$ (24	10.00)	Per person estimate: 3 students train to Hotel Monday and shuttle back to airport Thurs
Food not covered by event	Food	\$120.00	3	\$ (36	50.00)	\$30 per day per student, 4 days (Mon -Thurs)
Total Cost				\$ (3,09	96.00)	
ASNAU AWARD				\$ 75	50.00	
Balance costs				\$ (2,34	16.00)	
Undergrad student travel award (3 teams going to		\$1,100		\$ 36	6.67	Award is being shared in 3 equal parts.
ME Department travel award		\$200		\$ 60	00.00	\$200 being awarded per student
Karin's Travel Fund		?		?		
Fundraising at Bigfoot and Pay n'Take		?		?	· · ·	
Remaining Costs to Cover				\$ (1,37	79.33)	

MOVING FORWARD: SCHEDULE

- Siting
 - County Presentation, Windfarmer Models, Poster Alana, Anthony, and Leo
- V2G
 - V2G understanding and Model Mitchell and Michael

HR2: BLADES AND SITING

- Lower Cp than expected. Higher TSR than expected.
 - Model does not account for pitch regulated systems.
- Average power output ~3.65MW.
- Siting
 - Wind Resource: 15.7 16.8mph average wind speed.
 - **Turbine Selection:** 3 4.8MW off the shelf.
 - **# Turbines:** 20 33 turbines for 100MW power plant output.

Figure 3: Site Location

Leo 3/12/18 CWC18 Market B1 8

HR2: V2G and Design FEA

- V2G Simulink Model modified to match our population
 - 1000 Electric Cars- 40MW Storage (1000X40kW) 0
 - Consumption and Energy Storage
 - 150MW Residential Load (About 200,000 homes) Ο
 - Usage profile with most the load in morning and evening
 - 100MW Wind farm Ο
 - Nominal Wind Speed of 13.2 m/s
 - Wind Speed from 0-25m/s
 - Scopes Show the System is usable Ο
 - Coal and Diesel Power plants still in use

- **Conceptual Design of 3.5 MW Wind Turbine Finalized with FEA**
 - 1.5 meter tower deflection at 25 m/s \cap where braking is initiated
 - Max stress of 152 3 MPa at base 0 (Yield=500 Mpa)

HR2: Mitchell

Figure 3: Results of V2G Grid Example

Figure 5: V2G Grid Example

Figure 4: Adjusted Grid Example

Figure 7: Adjusted Grid Simulation

HR2: System Advisory Model and Siting

• System Advisory Model

• Analysis created using business model, in order to create financial figures.

Table 1: User Defined Turbine Inputs				
Rated Output:	3500 kW			
Rotor Diameter:	140 m			
Maximum Cp:	0.20			
Maximum Tip Speed:	80 m/s			
Maximum Tip Speed Ratio:	7.8			
Cut-In Wind Speed:	4 m/s			
Cut-Out Wind Speed:	25 m/s			
Drivetrain Design:	Direct Drive			
Blade Design:	Advanced Design			
Tower Design:	Advanced Design			

Table 2: SAM Outputs				
Annual Energy Production (Year 1)	320,223,776 kWh			
Capacity Factor (Year 1)	37.3%			
Levelized Cost of Energy	6.62 cents per kWh			

• Siting Challenge

- Obtained wind resource data for planned area.
- WindFarmer Analyst Tutorials
- Meeting with Coconino County Community Development Advisory Group

HR2: Windfarmer Theory and County Meeting

Windfamer Theory important points:

- Input Files
- Energy Calculations
 - Net Yield calculations
 - Modeling Losses as efficiencies
- Wake Models
 - Modified PARK
 - Eddy Viscosity
- Turbulence Estimations
 - Can be designed around IEC standards
- MCP methods
 - Least Squares method
 - PCA method

County Meeting Important Points:

- Windfarms and Met towers are processed as Conditional Use Permits (CUP's)
- The most important aspects to consider in this county are the environmental and visual aspects of the wind farm.
 - Game and Fish
 - Photo-sims
 - Neighbor outreach
 - Motion sensor lights

COLLEGIATE WIND COMPI

U.S. DEPARTMENT